Abstract

The properties of cylindrical and spherical electron acoustic shock waves (EASWs) in an unmagnetized plasma consisting of cold electrons, immobile ions, and hot electrons featuring Tsallis statistics are investigated by employing the reductive perturbation technique. A Korteweg-de Vries Burgers (KdVB) equation is derived and its numerical solution is obtained. The effects of electron nonextensivity and electron kinematic viscosity on the basic features of EA shock waves are discussed in nonplanar geometry. It is found that nonextensive nonplanar EA shock waves behave quite differently from their planar counterpart. Deviations from a pure planar geometry are significant only for times shorter that the inverse of the cold electron plasma frequency. Given that the hot electron dynamics is the most interesting one, and that in many astrophysical scenarios the cold electrons can be significantly rarefied, this restriction is not too limiting for the applicability of our model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.