Abstract

ABSTRACT Amendment of peat-based potting media with Al(2)(SO(4))(3) suppresses damping-off of Vinca (Catharanthus roseus) caused by Phytophthora parasitica. The species of aluminum (Al) responsible for disease suppression have not been identified. The objective of this study was to determine the effects of amount and pH of Al(2)(SO(4))(3) amendment solutions on survival of P. parasitica. In separate experiments, peat was amended with Al(2)(SO(4))(3) solutions adjusted to pH 4 or 6 at either 0.0158 or 0.0079 g of Al per gram of peat. Amended peat was placed in Büchner funnels maintained at -2.5 kPa matric potential. Peat was infested with P. parasitica by placing zero, two, or five colonized Vinca leaf disks in each funnel, and 15 Vinca seeds were placed in each funnel. After 24 h, the matric potential was brought to 0 kPa to induce zoospore release and returned to -2.5 kPa after 24 h. Pathogen populations and stand counts were assessed after 2-week incubation. Al amendment solutions at both pH 4 and 6 reduced pathogen populations at 0.0158 g of Al per gram of peat. Solutions at pH 4 reduced pathogen populations by more than 90% at both inoculum levels; amendment solutions at pH 6 reduced populations by 95% at the low inoculum level and 65% at the high inoculum level. The prevalence of Al(OH)(2)(+) in peat amended with Al(2)(SO(4))(3) solution at pH 6 suggests that ions other than Al(3+) may be responsible for pathogen suppression. Based on the difference in chemical conditions of Al-amended peat and suppressive mineral soils, the mechanism of Al-mediated suppression of plant pathogens is speculated to be different in the two systems. Peat containing Al-peat complexes was chemically suppressive to P. parasitica and may confer Al-mediated suppression of plant pathogens with a nonphytotoxic form of Al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.