Abstract
DDD and AAI pacemakers are considered physiological, since they preserve atrioventricular (AV) synchrony. Artificial pacing, however, is performed largely from right heart chambers, causing aberrant depolarization pathways. Pacing at the right atrial appendage (RAP) is known to delay left atrial contraction due to interatrial conduction time (IACT), and right ventricular (RV) apical pacing (RVP) delays left ventricular (LV) contraction due to interventricular conduction time (IVCT). These delays may render the left heart AV intervals (LAV) either too short or too long, thus affecting LV systolic function. The purpose of this study was to evaluate the actual LAV intervals during conventional, right heart AAI and DDD pacing. Resulting LAV intervals were compared to programmed AV values during all DDD pacing modalities. Ten patients with DDD and six patients with AAI pacemakers were studied. IACT was measured from the atrial spike to the onset of left P wave, as recorded by an esophageal lead. Systolic time intervals were measured using either a carotid pulse tracing or a densitogram (photoplethysmography). LV function was appraised by measuring rate-corrected LV ejection time (LVETc). IVCT was measured indirectly as the lengthening of LV preejection period (PEP) caused by RV pacing, as compared to normal depolarization pathway. Intrinsic IACT and IVCT were considered zero. Right heart AV intervals (RAV) were measured from surface ECG and LAVs were calculated according to the following equations: Sinus Rhythm: LAV = RAV; Atrial Pace + Ventricular Sense: LAV = RAV - IACT; Atrial Sense + Ventricular Pace: LAV = RAV + IVCT; Sequential AV Pace: LAV = RAV - IACT + IVCT.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.