Abstract

Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in calculations of photochemical and nonphotochemical quenching parameters. The implications of our data with respect to kinetic models for the excited-state dynamics of photosystem II and the practical applications of the fluorescence yield parameters Fm and Fsat to calculations of photochemical yield are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.