Abstract

Abstract The renormalization group equations of massive $\mathcal {N}=1$ supersymmetric quantum electrodynamics are studied using the functional renormalization group approach. A non-perturbative form of the beta function has been computed via a derivative expansion of the effective action. In the local potential approximation, the functional form of the non-perturbative beta function is closely related to the form of the Novikov–Shifman–Vainshtein–Zakharov (NSVZ) exact beta function; this relationship is exact if an effective fine-structure constant is defined. The non-massive limit of the same is also analyzed. Furthermore, the calculation of the beta function has been improved by incorporating the influence of momentum modes on the propagation of the superfields in the non-perturbative running of the electric charge, applying a second-order truncation for the derivative expansion, which we use to find the momentum contributions to the β function. Again, we find the NSVZ relation for an effective fine-structure constant. It is with sadness that I say goodbye to my professor, Iván Schmidt Andrade, who left us during the course of this work. His passion for research and his special vision of physics work will remain with us. Thank you for everything.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.