Abstract
A general non-perturbative analysis of the renormalization properties of $\Delta I=3/2$ four-fermion operators in the framework of lattice regularization with Wilson fermions is presented. We discuss the non-perturbative determination of the operator renormalization constants in the lattice Regularization Independent (RI or MOM) scheme. We also discuss the determination of the finite lattice subtraction coefficients from Ward Identities. We prove that, at large external virtualities, the determination of the lattice mixing coefficients, obtained using the RI renormalization scheme, is equivalent to that based on Ward Identities, in the continuum and chiral limits. As a feasibility study of our method, we compute the mixing matrix at several renormalization scales, for three values of the lattice coupling $\beta$, using the Wilson and tree-level improved SW-Clover actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.