Abstract

We consider the Diffusive Epidemic Process (DEP), a two-species reaction-diffusion process originally proposed to model disease spread within a population. This model exhibits a phase transition from an active epidemic to an absorbing state without sick individuals. Field-theoretic analyses suggest that this transition belongs to the universality class of Directed Percolation with a Conserved quantity (DP-C, not to be confused with conserved-directed percolation C-DP, appearing in the study of stochastic sandpiles). However, some exact predictions derived from the symmetries of DP-C seem to be in contradiction with lattice simulations. Here we revisit the field theory of both DP-C and DEP. We discuss in detail the symmetries present in the various formulations of both models. We then investigate the DP-C model using the derivative expansion of the nonperturbative renormalization group formalism. We recover previous results for DP-C near its upper critical dimension d_{c}=4, but show how the corresponding fixed point seems to no longer exist below d≲3. Consequences for the DEP universality class are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.