Abstract

Although arterial blood flow is physiologically non-periodic under resting conditions, periodic flow assumption has been widely adopted in most hemodynamic studies. So far, it remains unclear how the non-periodicity of blood flow would influence local hemodynamic parameters, especially wall shear stress (WSS) that associates closely with endothelial function and vascular disease. In this study, numerical simulations of blood flows in sixteen normal carotid artery bifurcations were performed under measured non-periodic and averaged periodic flow conditions, respectively, with the obtained results being compared in terms of five typical WSS metrics (i.e., mean WSS (MWSS), time-averaged WSS (TAWSS), oscillatory shear index (OSI), transverse WSS (transWSS), and average temporal gradient of WSS (WSSTG)) in the atheroprone low-WSS regions. It was found that simplifying the physiologically non-periodic flow condition into a periodic one did not significantly alter the major features of WSS distribution, but resulted in underestimations of some WSS metrics. Specifically, the degree of underestimation was largest (27.2% ± 8.3%) for WSSTG, smallest (0.5% ± 0.4%) for MWSS, while moderate (5.1% ± 3.2% ~ 9.2% ± 4.1%) for other WSS metrics. Statistical analyses revealed that the cycle-to-cycle variability of flow velocity waveform (var-V) and the planarity of internal carotid artery correlated strongly with the periodic flow assumption-induced underestimations of WSS metrics. These findings suggest that taking the non-periodic characteristic of blood flow into consideration could be important for studying hemodynamics in arteries with a large var-V or specific morphological characteristics, especially when WSSTG is the main hemodynamic parameter of concern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call