Abstract

Detailed temperature-dependent transport, optical microscopy, and synchrotron-based polychromatic x-ray microdiffraction measurements have been carried out in the vicinity of the metal-insulator transition (MIT) temperature of VO${}_{2}$ single crystals. The formation and propagation of a real-space phase boundary along the rutile c axis is monitored during the transition. Pure metallic rutile R, as well as insulating monoclinic M1 phases, is observed at the onset of MIT. The two phases are separated by a sharp-phase boundary. Our findings suggest a nonpercolative nature of the MIT in VO${}_{2.}$

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.