Abstract
Analytical expressions for the three components of the nonparaxial propagation of a Hermite—Laguerre—Gaussian (HLG) beam in uniaxial crystal orthogonal to the optical axis are derived. The intensity distribution of an HLG beam and its three components propagating in a uniaxial crystal orthogonal to the optical axis are demonstrated by numerical examples. Although the y and z components of an HLG beam in the incident plane are both equal to zero, they emerge upon propagation inside the uniaxial crystal. Moreover, the beam profile of the x component is relatively stable and the beam profiles of the y and z components have the same evolution law. If the ratio of the extraordinary refractive index to the ordinary refractive index is larger than unity, the beam profile of the HLG beam is elongated in the x direction and generally rotates clockwise. Otherwise, the beam profile of the HLG beam is elongated in the y direction and generally rotates anticlockwise. This research is beneficial to the optical trapping and nonlinear optics involved in the rotation of a beam profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.