Abstract

This study is concerned with parametric radiation from an arbitrary axisymmetric planar source with a special focus on low-frequency difference-frequency fields. As a model equation accounting for nonlinearity, diffraction, and dissipation, the Westervelt equation is used. The difference-frequency-field patterns are calculated in the quasi-linear approximation by the method of successive approximations. A multi-layer integral for calculation of the acoustic field is reduced to a three-dimensional one by employing an approximate analytical description of the primary field with the use of a multi-Gaussian beam expansion. This integral is subsequently reduced in the paraxial approximation to a one-dimensional form which has previously been published in literature and which represents a means for fast calculations of secondary acoustic fields. The three-dimensional integral is calculated numerically and the numerical results predict nonzero amplitude of the low-frequency field in the vicinity of the source which is an effect that cannot be correctly encompassed in the paraxial approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.