Abstract

Stochastic frontier models along the lines of Aigner et al. are widely used to benchmark firms’ performances in terms of efficiency. The models are typically fully parametric, with functional form specifications for the frontier as well as both the noise and the inefficiency processes. Studies such as Kumbhakar et al. have attempted to relax some of the restrictions in parametric models, but so far all such approaches are limited to a univariate response variable. Some (e.g., Simar and Zelenyuk; Kuosmanen and Johnson) have proposed nonparametric estimation of directional distance functions to handle multiple inputs and outputs, raising issues of endogeneity that are either ignored or addressed by imposing restrictive and implausible assumptions. This article extends nonparametric methods developed by Simar et al. and Hafner et al. to allow multiple inputs and outputs in an almost fully nonparametric framework while avoiding endogeneity problems. We discuss properties of the resulting estimators, and examine their finite-sample performance through Monte Carlo experiments. Practical implementation of the method is illustrated using data on U.S. commercial banks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.