Abstract
We investigate the behavior of the Generalized Likelihood Ratio Test (GLRT) (Fan, Zhang and Zhang [Ann. Statist. 29 (2001) 153–193]) for time varying coefficient models where the regressors and errors are non-stationary time series and can be cross correlated. It is found that the GLRT retains the minimax rate of local alternative detection under weak dependence and non-stationarity. However, in general, the Wilks phenomenon as well as the classic residual bootstrap are sensitive to either conditional heteroscedasticity of the errors, non-stationarity or temporal dependence. An averaged test is suggested to alleviate the sensitivity of the test to the choice of bandwidth and is shown to be more powerful than tests based on a single bandwidth. An alternative wild bootstrap method is proposed and shown to be consistent when making inference of time varying coefficient models for non-stationary time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.