Abstract

The two-sample location-scale problem arises in many situations like climate dynamics, bioinformatics, medicine, and finance. To address this problem, the nonparametric approach is considered because in practice, the normal assumption is often not fulfilled or the observations are too few to rely on the central limit theorem, and moreover outliers, heavy tails and skewness may be possible. In these situations, a nonparametric test is generally more robust and powerful than a parametric test. Various nonparametric tests have been proposed for the two-sample location-scale problem. In particular, we consider tests due to Lepage, Cucconi, Podgor-Gastwirth, Neuhäuser, Zhang, and Murakami. So far all these tests have not been compared. Moreover, for the Neuhäuser test and the Murakami test, the power has not been studied in detail. It is the aim of the article to review and compare these tests for the jointly detection of location and scale changes by means of a very detailed simulation study. It is shown that both the Podgor–Gastwirth test and the computationally simpler Cucconi test are preferable. Two actual examples within the medical context are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call