Abstract
This paper presents a numerical optimization method for shape design to improve the strength of thin-walled structures. A solution to maximum stress minimization problems subject to a volume constraint is proposed. With this solution, the optimal shape is obtained without any parameterization of the design variables for shape definition. It is assumed that the design domain is varied in the in-plane direction to maintain the curvatures of the initial shape. The problem is formulated as a non-parametric shape optimization problem. The shape gradient function is theoretically derived using the Lagrange multiplier method and the adjoint variable method. The traction method, which was proposed as a gradient method in Hilbert space, is applied to determine the smooth domain variation that minimizes the objective functional. The calculated results show the effectiveness and practical utility of the proposed solution in solving minmax shape optimization problems for the design of thin-walled structures under a strength criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.