Abstract

For the analysis of ultrahigh-dimensional data, the first step is often to perform screening and feature selection to effectively reduce the dimensionality while retaining all the active or relevant variables with high probability. For this, many methods have been developed under various frameworks but most of them only apply to complete data. In this paper, we consider an incomplete data situation, case II interval-censored failure time data, for which there seems to be no screening procedure. Basing on the idea of cumulative residual, a model-free or nonparametric method is developed and shown to have the sure independent screening property. In particular, the approach is shown to tend to rank the active variables above the inactive ones in terms of their association with the failure time of interest. A simulation study is conducted to demonstrate the usefulness of the proposed method and, in particular, indicates that it works well with general survival models and is capable of capturing the nonlinear covariates with interactions. Also the approach is applied to a childhood cancer survivor study that motivated thisinvestigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.