Abstract
We propose a sample size calculation approach for the estimation of sensitivity and specificity of diagnostic tests with multiple observations per subjects. Many diagnostic tests such as diagnostic imaging or periodontal tests are characterized by the presence of multiple observations for each subject. The number of observations frequently varies among subjects in diagnostic imaging experiments or periodontal studies. Nonparametric statistical methods for the analysis of clustered binary data have been recently developed by various authors. In this paper, we derive a sample size formula for sensitivity and specificity of diagnostic tests using the sign test while accounting for multiple observations per subjects. Application of the sample size formula for the design of a diagnostic test is discussed. Since the sample size formula is based on large sample theory, simulation studies are conducted to evaluate the finite sample performance of the proposed method. We compare the performance of the proposed sample size formula with that of the parametric sample size formula that assigns equal weight to each observation. Simulation studies show that the proposed sample size formula generally yields empirical powers closer to the nominal level than the parametric method. Simulation studies also show that the number of subjects required increases as the variability in the number of observations per subject increases and the intracluster correlation increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.