Abstract

Let \(\displaystyle Z_{\mathbf {i}}=\left( X_{\mathbf {i}},\ Y_{\mathbf {i}}\right) _{\mathbf {i}\in \mathbb {N}^{N}\, N \ge 1}\), be a \( \mathbb {R}^d\times \mathbb {R}\)-valued measurable strictly stationary spatial process. We consider the problem of estimating the regression function of \(Y_{\mathbf {i}}\) given \(X_{\mathbf {i}}\). We construct an alternative kernel estimate of the regression function based on the minimization of the mean squared relative error. Under some general mixing assumptions, the almost complete consistency and the asymptotic normality of this estimator are obtained. Its finite-sample performance is compared with a standard kernel regression estimator via a Monte Carlo study and real data example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.