Abstract

A nonparametric regression setting is considered with a real-valued covariate and responses from a metric space. One may approach this setting via Fréchet regression, where the value of the regression function at each point is estimated via a Fréchet mean calculated from an estimated objective function. A second approach is geodesic regression, which builds upon fitting geodesics to observations by a least squares method. These approaches are applied to transform two of the most important nonparametric regression estimators in statistics to the metric setting – the local linear regression estimator and the orthogonal series projection estimator. The resulting procedures consist of known estimators as well as new methods. We investigate their rates of convergence in a general setting and compare their performance in a simulation study on the sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.