Abstract

Registration aims to decompose amplitude and phase variation of samples of curves. Phase variation is captured by warping functions which monotonically transform the domains. Resulting registered curves should then only exhibit amplitude variation. Most existing methods assume that all sample functions exhibit a typical sequence of shape features like peaks or valleys, and registration focuses on aligning these features. A more general perspective is adopted which goes beyond feature alignment. A registration method is introduced where warping functions are defined in such a way that the resulting registered curves span a low dimensional linear function space. The approach may be used as a tool for analyzing any type of functional data satisfying a structural regularity condition called bounded shape variation. Problems of identifiability are discussed in detail, and connections to established registration procedures are analyzed. The method is applied to real and simulated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.