Abstract
Using high-frequency intraday data, we construct, test and model seven new realized volatility estimators for six international equity indices. We detect jumps in these estimators, construct the jump components of volatility and perform various tests on their properties. Then we use the class of heterogeneous autoregressive (HAR) models for assessing the relevant effects of jumps on volatility. Our results expand and complement the previous literature on the nonparametric realized volatility estimation in terms of volatility jumps being examined and modeled for the international equity market, using such a variety of new realized volatility estimators. The selection of realized volatility estimator greatly affects jump detection, magnitude and modeling. The properties each volatility estimator tries to incorporate affect the detection, magnitude and properties of jumps. These volatility-estimation and jump properties are also evident in jump modeling based on statistical and economic terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.