Abstract
We develop a set of nonparametric rank tests for non-stationary panels based on multivariate variance ratios which use untruncated kernels. As such, the tests do not require the choice of tuning parameters associated with bandwidth or lag length and also do not require choices with respect to numbers of common factors. The tests allow for unrestricted cross-sectional dependence and dynamic heterogeneity among the units of the panel, provided simply that a joint functional central limit theorem holds for the panel of differenced series. We provide a discussion of the relationships between our setting and the settings for which first- and second generation panel unit root tests are designed. In Monte Carlo simulations we illustrate the small-sample performance of our tests when they are used as panel unit root tests under the more restrictive DGPs for which panel unit root tests are typically designed, and for more general DGPs we also compare the small-sample performance of our nonparametric tests to parametric rank tests. Finally, we provide an empirical illustration by testing for income convergence among countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.