Abstract
Abstract Because stock prices are not normally distributed, the power of nonparametric rank tests dominate parametric tests in event study analyses of abnormal returns on a single day. However, problems arise in the application of nonparametric tests to multiple day analyses of cumulative abnormal returns (CARs) that have caused researchers to normally rely upon parametric tests. In an effort to overcome this shortfall, this paper proposes a generalized rank (GRANK) testing procedure that can be used on both single day and cumulative abnormal returns. Asymptotic distributions of the associated test statistics are derived, and their empirical properties are studied with simulations of CRSP returns. The results show that the proposed GRANK procedure outperforms previous rank tests of CARs and is robust to abnormal return serial correlation and event-induced volatility. Moreover, the GRANK procedure exhibits superior empirical power relative to popular parametric tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.