Abstract
Quasi-likelihood was extended to right censored data to handle heteroscedasticity in the frame of the accelerated failure time (AFT) model. However, the assumption of known variance function in the quasi-likelihood for right censored data is usually unrealistic. In this paper, we propose a nonparametric quasi-likelihood by replacing the specified variance function with a nonparametric variance function estimator. This nonparametric variance function estimator is obtained by smoothing a function of squared residuals via local polynomial regression. The rate of convergence of the nonparametric variance function estimator and the asymptotic limiting distributions of the regression coefficient estimators are derived. It is demonstrated in simulations that for finite samples the proposed nonparametric quasi-likelihood method performs well. The new method is illustrated with one real dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.