Abstract

The development of genotypes with adaptation to a wide range of environments is one of the most important goals of plant breeding programs. In order to compare nonparametric stability measures and to identify promising high-yield and stable barley (Hordeum vulgare L.), 20 barley genotypes selected from the Iran/ICARDA joint project and grown in nine environments during 2009-11 in Iran. Four nonparametric statistical tests of significance for genotype × environment (GE) interaction and 10 nonparametric measures of stability were used to identify stable genotypes in nine environments. Results of nonparametric tests of G×E interaction (Kubinger, Hildebrand, and Kroon/ Laan) and a combined ANOVA across environments, indicated the presence of both crossover and non-crossover interactions. Also, only TOP and rank-sum values were positively associated with high yield. Thus, in the simultaneous selection for high yield and stability, only the rank-sum and TOP methods were useful in terms of the principal component analysis results, and correlation analysis of nonparametric stability statistics and yield. According to these stability parameters (TOP and rank-sum), three genotypes (G13, G12, and G17) were the most stable for grain yield. The results also revealed that based on nonparametric test results, stability could be classified into three groups, according to agronomic and biological concepts of stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call