Abstract

Gaussian processes (GPs) constitute one of the most important Bayesian machine learning approaches, based on a particularly effective method for placing a prior distribution over the space of regression functions. Several researchers have considered postulating mixtures of GPs as a means of dealing with nonstationary covariance functions, discontinuities, multimodality, and overlapping output signals. In existing works, mixtures of GPs are based on the introduction of a gating function defined over the space of model input variables. This way, each postulated mixture component GP is effectively restricted in a limited subset of the input space. In this paper, we follow a different approach. We consider a fully generative nonparametric Bayesian model with power-law behavior, generating GPs over the whole input space of the learned task. We provide an efficient algorithm for model inference, based on the variational Bayesian framework, and prove its efficacy using benchmark and real-world datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.