Abstract

This article addresses the density estimation problem using nonparametric Bayesian approach. It is considered hierarchical mixture models where the uncertainty about the mixing measure is modeled using the Dirichlet process. The main goal is to build more flexible models for density estimation. Extensions of the normal mixture model via Dirichlet process previously introduced in the literature are twofold. First, Dirichlet mixtures of skew-normal distributions are considered, say, in the first stage of the hierarchical model, the normal distribution is replaced by the skew-normal one. We also assume a skew-normal distribution as the center measure in the Dirichlet mixture of normal distributions. Some important results related to Bayesian inference in the location-scale skew-normal family are introduced. In particular, we obtain the stochastic representations for the full conditional distributions of the location and skewness parameters. The algorithm introduced by MacEachern and Müller in 1998 is used to sample from the posterior distributions. The models are compared considering simulated data sets. Finally, the well-known Old Faithful Geyser data set is analyzed using the proposed models and the Dirichlet mixture of normal distributions. The model based on Dirichlet mixture of skew-normal distributions captured the data bimodality and skewness shown in the empirical distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.