Abstract

We consider nonparametric adaptive spectral analysis of complex-valued data sequences with missing samples occurring in arbitrary patterns. We first present two high-resolution missing-data spectral estimation algorithms: the Iterative Adaptive Approach (IAA) and the Sparse Learning via Iterative Minimization (SLIM) method. Both algorithms can significantly improve the spectral estimation performance, including enhanced resolution and reduced sidelobe levels. Moreover, we consider fast implementations of these algorithms using the Conjugate Gradient (CG) technique and the Gohberg-Semencul-type (GS) formula. Our proposed implementations fully exploit the structure of the steering matrices and maximize the usage of the Fast Fourier Transform (FFT), resulting in much lower computational complexities as well as much reduced memory requirements. The effectiveness of the adaptive spectral estimation algorithms is demonstrated via several 2-D interrupted synthetic aperture radar (SAR) imaging examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.