Abstract

The venerable method of maximum likelihood has found numerous recent applications in nonparametric estimation of regression and shape constrained densities. For mixture models the nonparametric maximum likelihood estimator (NPMLE) of Kiefer and Wolfowitz plays a central role in recent developments of empirical Bayes methods. The NPMLE has also been proposed by Cosslett as an estimation method for single index linear models for binary response with random coefficients. However, computational difficulties have hindered its application. Combining recent developments in computational geometry and convex optimization, we develop a new approach to computation for such models that dramatically increases their computational tractability. Consistency of the method is established for an expanded profile likelihood formulation. The methods are evaluated in simulation experiments, compared to the deconvolution methods of Gautier and Kitamura and illustrated in an application to modal choice for journey-to-work data in the Washington DC area. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.