Abstract
A completely nonparametric method for the estimation of mixture cure models is proposed. A nonparametric estimator of the incidence is extensively studied and a nonparametric estimator of the latency is presented. These estimators, which are based on the Beran estimator of the conditional survival function, are proved to be the local maximum likelihood estimators. An i.i.d. representation is obtained for the nonparametric incidence estimator. As a consequence, an asymptotically optimal bandwidth is found. Moreover, a bootstrap bandwidth selection method for the nonparametric incidence estimator is proposed. The introduced nonparametric estimators are compared with existing semiparametric approaches in a simulation study, in which the performance of the bootstrap bandwidth selector is also assessed. Finally, the method is applied to a database of colorectal cancer from the University Hospital of A Coruña (CHUAC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.