Abstract
In this article, I propose a nonparametric strategy to identify the distribution of heterogeneous causal effects. A set of identification restrictions proposed in this article differs from existing approaches in three ways. First, it extends the random coefficient model by allowing potentially nonlinear interactions between distributional parameters and the set of covariates. Second, the causal effect distributions identified in this article give an alternative to those under the rank invariance assumption. Third, identified distribution lies within the sharp bound of distributions of the treatment effect. I develop a consistent nonparametric estimator exploiting the identifying restriction by extending the conventional statistical deconvolution method to the Rubin causal framework. Results from a Monte Carlo experiment and an application to wage loss of displaced workers suggest that the method yields robust estimates under various scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.