Abstract
Summary form only given. Nonparametric hypothesis testing for a spatial signal can involve a large number of hypotheses. For instance, two satellite images of the same scene, taken before and after an event, could be used to test a hypothesis that the event has no environmental impact. This is equivalent to testing that the mean difference of after-before is zero at each of the (typically thousands of) pixels that make up the scene. In such a situation, conventional testing procedures that control the overall Type I error deteriorate as the number of hypotheses increase. Powerful testing procedures are needed for this problem of testing for the presence of a spatial signal. In this talk, we propose a procedure called enhanced FDR (EFDR), which is based on controlling the false discovery rate (FDR) and a concept known as generalized degrees of freedom (GDF). EFDR differs from the standard FDR procedure through its reducing of the number of hypotheses tested. This is done in two ways: first, the model is represented more parsimoniously in the wavelet domain, and second, an optimal selection of hypotheses is made using a criterion based on generalized degrees of freedom. Not only does the EFDR procedure tell us whether a spatial signal is present or not, it has an added bonus that, if a signal is deemed present, it can indicate its location and magnitude. The EFDR procedure is applied to an airtemperature data set generated from the climate system model (CSM) of the National Center for Atmospheric Research (NCAR) and to brain-imaging data from fMRI experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.