Abstract

Abstract The Ozone Weekend Effect (OWE) has become increasingly more frequent and widespread in southern California since the mid-1970s. Although a number of hypotheses have been suggested to explain the effect, there remains uncertainty associated with the root factors contributing to elevated weekend ozone concentrations. Targeting the time window of the 1997 Southern California Ozone Study (SCOS97), this paper examines traffic activity data for 14 vehicle classes at 27 weigh-in-motion (WIM) stations in southern California. Nonparametric factorial analyses of light-duty vehicle (LDV) and heavy-duty truck (HDT) traffic volumes indicate significant differences in daily volumes by day of week and between the weekly patterns of daily LDV and HDT volumes. Across WIM stations, the daily LDV volume was highest on Friday and decreased by 10% on weekends compared to that on midweek days. In contrast, daily HDT volumes showed dramatic weekend drops of 53% on Saturday and 64% on Sunday. As a result, LDV to HDT ratios increased by 145% on weekends. Nonparametric tests also suggest that weekly traffic patterns varied significantly between WIM stations located close to (central) and far from (peripheral) the Los Angeles Metro area. Weekend increases in LDV/HDT ratios were more pronounced at central WIM sites due to greater weekend declines of HDT relative to LDV traffic. The implications of these weekly traffic patterns for the OWE in southern California were investigated by estimating daily WIM traffic on-road running exhaust emissions of total organic gas (TOG) and oxides of nitrogen (NOx) using EMFAC2002 emission factors. The results support the California Air Resource Board's (CARB's) NOx reduction hypothesis that greater weekend NOx reductions relative to volatile organic compound (VOC) emissions, in combinations with the VOC-limited ozone system, contribute to the OWE observed in the region. The results from this study can be used to develop weekend on-road mobile emission inventories for the purpose of air quality modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.