Abstract

It is well known that the nonparametric maximum likelihood estimator (NPMLE) can severely underestimate the survival probabilities at early times for left-truncated and interval-censored (LT-IC) data. For arbitrarily truncated and censored data, Pan and Chappel (JAMA Stat Probab Lett 38:49-57, 1998a, Biometrics 54:1053-1060, 1998b) proposed a nonparametric estimator of the survival function, called the iterative Nelson estimator (INE). Their simulation study showed that the INE performed well in overcoming the under-estimation of the survival function from the NPMLE for LT-IC data. In this article, we revisit the problem of inconsistency of the NPMLE. We point out that the inconsistency is caused by the likelihood function of the left-censored observations, where the left-truncated variables are used as the left endpoints of censoring intervals. This can lead to severe underestimation of the survival function if the NPMLE is obtained using Turnbull's (JAMA 38:290-295, 1976) EM algorithm. To overcome this problem, we propose a modified maximum likelihood estimator (MMLE) based on a modified likelihood function, where the left endpoints of censoring intervals for left-censored observations are the maximum of left-truncated variables and the estimated left endpoint of the support of the left-censored times. Simulation studies show that the MMLE performs well for finite sample and outperforms both the INE and NPMLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.