Abstract

A theory of superefficiency and adaptation is developed under flexible performance measures which give a multiresolution view of risk and bridge the gap between pointwise and global estimation. This theory provides a useful benchmark for the evaluation of spatially adaptive estimators and shows that the possible degree of superefficiency for minimax rate optimal estimators critically depends on the size of the neighborhood over which the risk is measured. Wavelet procedures are given which adapt rate optimally for given shrinking neighborhoods including the extreme cases of mean squared error at a point and mean integrated squared error over the whole interval. These adaptive procedures are based on a new wavelet block thresholding scheme which combines both the commonly used horizontal blocking of wavelet coefficients (at the same resolution level) and vertical blocking of coefficients (across different resolution levels).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.