Abstract
Nonparametric regression is a standard statistical tool with increased importance in the Big Data era. Boundary points pose additional difficulties but local polynomial regression can be used to alleviate them. Local linear regression, for example, is easy to implement and performs quite well both at interior and boundary points. Estimating the conditional distribution function and/or the quantile function at a given regressor point is immediate via standard kernel methods but problems ensue if local linear methods are to be used. In particular, the distribution function estimator is not guaranteed to be monotone increasing, and the quantile curves can “cross.” In the article at hand, a simple method of correcting the local linear distribution estimator for monotonicity is proposed, and its good performance is demonstrated via simulations and real data examples. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.