Abstract
This paper studies estimation of covariance matrices with conditional sparse structure. We overcome the challenge of estimating dense matrices using a factor structure, the challenge of estimating large-dimensional matrices by postulating sparsity on covariance of random noises, and the challenge of estimating varying matrices by allowing factor loadings to smoothly change. A kernel-weighted estimation approach combined with generalised shrinkage is proposed. Under some technical conditions, we derive uniform consistency for the developed estimation method and obtain convergence rates. Numerical studies including simulation and an empirical application are presented to examine the finite-sample performance of the developed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.