Abstract

In the estimation of nonparametric additive models, conventional methods, such as backfitting and series approximation, cannot be applied when measurement error is present in a covariate. This paper proposes a two-stage estimator for such models. In the first stage, to adapt to the additive structure, we use a series approximation together with a ridge approach to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence rate of this first-stage estimator and characterize how the measurement error slows down the convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the first-stage estimator. The asymptotic normality of the second-stage estimator is established for ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical application highlight the applicability of the estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.