Abstract
We study the nonparametric estimation of the jump density of a renewal reward process from one discretely observed sample path over [0,T]. We consider regimes where the sampling rate goes to 0 as T tends to infinity. We propose an adaptive wavelet threshold density estimator and study its performance for the Lp loss, over Besov spaces. We achieve minimax rates of convergence for sampling rates that vanish with T at arbitrary polynomial rate. In the same spirit as Buchmann and Grubel (2003) the estimation procedure is based on the inversion of the compounding operator. The inverse has no closed form expression and is approached with a fixed point technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.