Abstract

The construction and analysis of repair models is an important area in reliability. A commonly used model is the minimal repair model. Under this model, repair restores the state of the system to its level prior to failure. Kijima introduced repair models that could be classified as better-than-minimal. Under Kijima's models, the system, upon repair, is functionally the same as a working system of lesser age which has never experienced failure. In this paper, we present a new approach to the modeling of better-than-minimal repair models. Using this approach, we construct a general repair model that contains Kijima's models as special cases. We also study the problem of estimating the distribution of the time to first failure of a system maintained by general repair. We make use of counting processes to show strong consistency of the estimator and prove results on weak convergence. Finally, we derive a Hall-Wellner type asymptotic confidence band for the distribution of the time to first failure of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.