Abstract
Tmax is the time associated with the maximum serum or plasma drug concentration achieved following a dose. While Tmax is continuous in theory, it is usually discrete in practice because it is equated to a nominal sampling time in the noncompartmental pharmacokinetics approach. For a 2-treatment crossover design, a Hodges-Lehmann method exists for a confidence interval on treatment differences. For appropriately designed crossover studies with more than two treatments, a new median-scaling method is proposed to obtain estimates and confidence intervals for treatment effects. A simulation study was done comparing this new method with two previously described rank-based nonparametric methods, a stratified ranks method and a signed ranks method due to Ohrvik. The Normal theory, a nonparametric confidence interval approach without adjustment for periods, and a nonparametric bootstrap method were also compared. Results show that less dense sampling and period effects cause increases in confidence interval length. The Normal theory method can be liberal (i.e. less than nominal coverage) if there is a true treatment effect. The nonparametric methods tend to be conservative with regard to coverage probability and among them the median-scaling method is least conservative and has shortest confidence intervals. The stratified ranks method was the most conservative and had very long confidence intervals. The bootstrap method was generally less conservative than the median-scaling method, but it tended to have longer confidence intervals. Overall, the median-scaling method had the best combination of coverage and confidence interval length. All methods performed adequately with respect to bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.