Abstract

We consider evaluating biomarkers for treatment selection under assay modification. Survival outcome, treatment, and Affymetrix gene expression data were attained from cancer patients. Consider migrating a gene expression biomarker to the Illumina platform. A recent novel approach allows a quick evaluation of the migrated biomarker with only a reproducibility study needed to compare the two platforms, achieved by treating the original biomarker as an error-contaminated observation of the migrated biomarker. However, its assumptions of a classical measurement error model and a linear predictor for the outcome may not hold. Ignoring such model deviations may lead to sub-optimal treatment selection or failure to identify effective biomarkers. To overcome such limitations, we adopt a nonparametric logistic regression to model the relationship between the event rate and the biomarker, and the deduced marker-based treatment selection is optimal. We further assume a nonparametric relationship between the migrated and original biomarkers and show that the error-contaminated biomarker leads to sub-optimal treatment selection compared to the error-free biomarker. We obtain the estimation via B-spline approximation. The approach is assessed by simulation studies and demonstrated through application to lung cancer data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.