Abstract

We present a method for segmenting a set of unstructured demonstration trajectories to discover reusable skills using inverse reinforcement learning (IRL). Each skill is characterised by a latent reward function which the demonstrator is assumed to be optimizing. The skill boundaries and the number of skills making up each demonstration are unknown. We use a Bayesian nonparametric approach to propose skill segmentations and maximum entropy inverse reinforcement learning to infer reward functions from the segments. This method produces a set of Markov Decision Processes (MDPs) that best describe the input trajectories. We evaluate this approach in a car driving domain and a simulated quadcopter obstacle course, showing that it is able to recover demonstrated skills more effectively than existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.