Abstract

Existing methods for estimation of dynamic treatment regimes are mostly limited to intention-to-treat analyses-which estimate the effect of randomization to a particular treatment regime without considering the compliance behavior of patients. In this article, we propose a novel nonparametric Bayesian Q-learning approach to construct optimal sequential treatment regimes that adjust for partial compliance. We consider the popular potential compliance framework, where some potential compliances are latent and need to be imputed. The key challenge is learning the joint distribution of the potential compliances, which we accomplish using a Dirichlet process mixture model. Our approach provides two kinds of treatment regimes: (1) conditional regimes that depend on the potential compliance values; and (2) marginal regimes where the potential compliances are marginalized. Extensive simulation studies highlight the usefulness of our method compared to intention-to-treat analyses. We apply our method to the Adaptive Treatment for Alcohol and Cocaine Dependence (ENGAGE) study , where the goal is to construct optimal treatment regimes to engage patients in therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.