Abstract

Nonresponse frequently arises in practice, and simply ignoring it may lead to erroneous inference. Besides, the number of collected covariates may increase as the sample size in modern statistics, so parametric imputation or propensity score weighting usually leads to estimation inefficiency and introduces a large variability without consideration of sparsity. In this paper, we propose a nonparametric imputation method with sparsity to estimate the finite population mean, where an efficient kernel-based method in the reproducing kernel Hilbet space is employed for estimation and sparse learning. Moreover, an augmented inverse probability weighting framework is adopted to achieve a central limit theorem for the proposed estimator under regularity conditions. The performance of the proposed method is also supported by several simulated examples and one real-life analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.