Abstract

In this article, we present nonparametric and semiparametric methods to analyze current status data subject to outcome misclassification. Our methods use nonparametric maximum likelihood estimation (NPMLE) to estimate the distribution function of the failure time when sensitivity and specificity are known and may vary among subgroups. A nonparametric test is proposed for the two sample hypothesis testing. In regression analysis, we apply the Cox proportional hazard model and likelihood ratio based confidence intervals for the regression coefficients are proposed. Our methods are motivated and demonstrated by data collected from an infectious disease study in Seattle, WA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.