Abstract
This paper develops a test for comparing treatment effects when observations are missing at random for repeated measures data on independent subjects. It is assumed that missingness at any occasion follows a Bernoulli distribution. It is shown that the distribution of the vector of linear rank statistics depends on the unknown parameters of the probability law that governs missingness, which is absent in the existing conditional methods employing rank statistics. This dependence is through the variance–covariance matrix of the vector of linear ranks. The test statistic is a quadratic form in the linear rank statistics when the variance–covariance matrix is estimated. The limiting distribution of the test statistic is derived under the null hypothesis. Several methods of estimating the unknown components of the variance–covariance matrix are considered. The estimate that produces stable empirical Type I error rate while maintaining the highest power among the competing tests is recommended for implementation in practice. Simulation studies are also presented to show the advantage of the proposed test over other rank-based tests that do not account for the randomness in the missing data pattern. Our method is shown to have the highest power while also maintaining near-nominal Type I error rates. Our results clearly illustrate that even for an ignorable missingness mechanism, the randomness in the pattern of missingness cannot be ignored. A real data example is presented to highlight the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.