Abstract
Analysis of randomized experiments with missing covariate and outcome data is problematic, because the population parameters of interest are not identified unless one makes untestable assumptions about the distribution of the missing data. This article shows how population parameters can be bounded without making untestable distributional assumptions. Bounds are also derived under the assumption that covariate data are missing completely at random. In each case the bounds are sharp; they exhaust all of the information available given the data and the maintained assumptions. The bounds are illustrated with applications to data obtained from a clinical trial and data relating family structure to the probability that a youth graduates from high school.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.