Abstract

The article presents some of the basic theory for nonparametric inference on non-Euclidean spaces using Frechet means that has been developed during the past two decades. Included are recent results on the asymptotic distribution theory of sample Frechet means on such spaces, especially differentiable and Riemannian manifolds. Apart from this main theme and its applications, a nonparametric Bayes theory on Riemannian manifolds is outlined for the purpose of density estimation and classification. A final section briefly discusses the problem of machine vision, or robotic recognition of images as Riemannian manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.