Abstract

Fatty acyl ethyl esters, previously identified in our laboratory as metabolites of ethanol in human and rabbit myocardium, arise from an esterification of free fatty acids with ethanol in the absence of ATP and coenzyme A. This study was designed to isolate and purify the enzyme(s) in rabbit myocardium that catalyze(s) this reaction. Enzyme activity in homogenates of rabbit myocardium, as assayed by the rate of synthesis of ethyl [14C]oleate from 0.4 mM [14C]oleic acid and 0.2 M ethanol, was 31 nmol/(g.h), and all of it was recovered in the 48400g supernatant. This soluble ethyl ester synthase activity bound to DEAE-cellulose at pH 8, and elution with a NaCl gradient (0-0.25 M) separated two enzyme activities accounting for 13 and 87% of recovered synthase activity. The major enzyme activity was then purified over 5000-fold to homogeneity by sequential gel permeation, hydrophobic interaction, and anti-albumin affinity chromatographies with an overall yield of 40%. Up to 45 micrograms of enzyme was present per g of myocardium. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single polypeptide with Mr 26 000, and gel permeation chromatography under nondenaturing conditions indicated a Mr of 50 000 for the active enzyme. Kinetic analyses using the purified enzyme indicated that greatest rates of ethyl ester synthesis were observed with unsaturated octadecanoic fatty acid substrates [Vmax = 1.9 and 1.5 nmol/(mg.s) for linoleate and oleate, respectively], with lesser rates associated with palmitate, stearate, and arachidonate substrates [0.14, 0.03, and 0.35 nmol/(mg.s), respectively].(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call